Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis

نویسندگان

  • Clark M. Johnson
  • Brian L. Beard
  • Cornelis Klein
  • Nic J. Beukes
  • Eric E. Roden
چکیده

The voluminous 2.5 Ga banded iron formations (BIFs) from the Hamersley Basin (Australia) and Transvaal Craton (South Africa) record an extensive period of Fe redox cycling. The major Fe-bearing minerals in the Hamersley–Transvaal BIFs, magnetite and siderite, did not form in Fe isotope equilibrium, but instead reflect distinct formation pathways. The near-zero average dFe values for magnetite record a strong inheritance from Fe oxide/hydroxide precursors that formed in the upper water column through complete or near-complete oxidation. Transformation of the Fe oxide/hydroxide precursors to magnetite occurred through several diagenetic processes that produced a range of dFe values: (1) addition of marine hydrothermal Feaq, (2) complete reduction by bacterial dissimilatory iron reduction (DIR), and (3) interaction with excess Feaq that had low d Fe values and was produced by DIR. Most siderite has slightly negative dFe values of 0.5‰ that indicate equilibrium with Late Archean seawater, although some very negative dFe values may record DIR. Support for an important role of DIR in siderite formation in BIFs comes from previously published C isotope data on siderite, which may be explained as a mixture of C from bacterial and seawater sources. Several factors likely contributed to the important role that DIR played in BIF formation, including high rates of ferric oxide/hydroxide formation in the upper water column, delivery of organic carbon produced by photosynthesis, and low clastic input. We infer that DIR-driven Fe redox cycling was much more important at this time than in modern marine systems. The low pyrite contents of magnetiteand siderite-facies BIFs suggests that bacterial sulfate reduction was minor, at least in the environments of BIF formation, and the absence of sulfide was important in preserving magnetite and siderite in the BIFs, minerals that are poorly preserved in the modern marine record. The paucity of negative dFe values in older (Early Archean) and younger (Early Proterozoic) BIFs suggests that the extensive 2.5 Ga Hamersley–Transvaal BIFs may record a period of maximum expansion of DIR in Earth’s history. 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically recycled continental iron is a major component in banded iron formations.

Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated de...

متن کامل

Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation

We present the iron isotope composition of primary, diagenetic and metamorphic minerals in five samples from the contact metamorphosed Biwabik Iron Formation. These samples attained peak metamorphic temperatures of <200, <340, ~500, <550, and <740 C respectively. dFe of bulk layers ranges from –0.8 to +0.8&; in some samples the layers may differ by >1& on the millimeter scale. Minerals in the l...

متن کامل

Genesis of the Tang Zagh iron deposit by using mineralogical and geochemical data, Hormozgan province

The Tang Zagh iron deposit is located about 117 km Northeast of Bandar Abbas, Hormozgan Province in the structural folded-thrusted zone of the Zagros basin. Iron mineralization occurs in the form of iron oxides (hematite) within the salt dome and/or in fractures and between the layers of the younger strata with the Tertiary age. Based on the microscopic studies, dolomitic fragments of the host ...

متن کامل

The relation between iron-formation and low temperature hydrothermal alteration in an Archean volcanic environment

The uppermost section of the Hunter Mine group (HMG) (2728 Ma), a bimodal volcanic complex in the Abitibi greenstone belt, contains both oxide and carbonate facies banded iron-formation (BIF). This paper explores the relationship between volcanic activity and the development of the two types of iron-formation. The oxide facies, represented by chert-jasper-magnetite iron-formation is widespread ...

متن کامل

Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.

Archean rocks may provide a record of early Earth environments. However, such rocks have often been metamorphosed by high pressure and temperature, which can overprint the signatures of their original formation. Here, we show that the early Archean banded rocks from Isua, Akilia, and Innersuartuut, Greenland, are enriched in heavy iron isotopes by 0.1 to 0.5 per mil per atomic mass unit relativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007